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ABSTRACT 

The hydrodynamics of the Tri-Flo™, a two stage cylindrical cyclone used in dense media separation, 

is studied using Computational Fluid Dynamics. The flow field is simulated with an Euler-Euler 

Volume of Fluid two-phase approach and the Reynolds stress turbulence model. 

A unique feature of the device is that the separation medium suspension is pumped and introduced 

tangentially into the two cylindrical compartments while the raw feed is conveyed to the feed hopper 

and fed at the axial inlet. This feature allows to use less pumping energy and limits the unavoidable 

production of fines. The Tri-Flo™ complex flow pattern is little known but central to the efficiency of 

the separation. 

The velocity field is computed within the two compartments of the separator. The interface of the air-

core that forms in the inner axial part of the cylindrical sections is identified and visualized. The 

numerical results for a reduced-size 100 mm ID Tri-Flo™ are compared against laser Doppler 

measurements on a transparent acrylic model (Chinè, 1995) operated with water. The robustness of 

the model and its prediction capability are verified.  

The possibility to accurately predict the velocity profiles within the vessel and their dependence on 

the main Tri-Flo™ operating and geometrical variables paves the way to a better understanding of the 

functioning of the separator, its design improvements and scale-up.  



 

 

INTRODUCTION 

The Tri-Flo™ device is a two stage dynamic dense medium separator. The two stages are 

integrated in a cylindrical vessel divided in two compartments. The first stage produces a 

sink (SINK1) and a float, the latter is retreated in the second stage; particles misplaced in the 

first stage as float have another chance to be properly separated by the second stage that 

produces a final float (FLOAT) and a second sink (SINK2). This results in a sharper overall 

separation-efficiency curve as a function of the density. 

Feed and medium are introduced separately in the vessel. The separation medium 

suspension is pumped and introduced tangentially into the two cylindrical compartments. 

The raw feed is conveyed to the feed hopper and fed at the axial inlet. Only a small quantity 

of medium is poured by gravity with the feed material to wet the particles. This is a unique 

feature of the Tri-Flo™ that allows to use less pumping energy and limits the undesirable 

production of fines. The float is discharged at atmospheric pressure. The sink products are 

discharged with a counter-pressure adjustable with raised flexible pipes. Typical installation 

angle of the device are 15-30 degree with respect the horizontal depending on the 

application.  

The first Tri-Flo™ prototype was built in the late 70’s as a replacement of a Dyna-Whirepool 

vessel (DWP) for the revamping of the Masua lead-zinc concentrator (Sardinia). The 

metallurgical results (metal recovery vs. sink grade) where soon improved. Since then, a 

number of installations entered in operation worldwide for the separation of heavy minerals. 

At Geevor (Cornwall) tin pre-concentrator plant the Tri-Flo™ substituted a Wemco-Drum 

separator. In these applications the second stage acts as a scavenger unit. 

The second stage of the separator can operate with medium of lower density than the first 

stage. With such a dual-density set-up at Prestavel (Stava, Trento, Italy) the first stage 

separated galena and sphalerite (SINK1) and in the second stage fluorite (SINK2) was 

separated by the gangue discharged with the float product.  

In Figure 1 a simplified flow-sheet of a two cut density installation is shown. It integrates wet 

prescreening for eliminating fine particles and slimes, medium draining and rinse, dilute 

medium treatment for density regeneration and elimination of contaminating fines. These 

contribute to increase the medium viscosity that is detrimental for the sharpness of the 

separation. In most practical applications two magnetic separation stages are needed for 

proper media-fines decontamination (Ferrara & Schena, 1988). 

Today most of the Tri-Flo™ applications are for coal washing and the second stage can be 



 

 

seen as a cleaning-stage delivering low ash coal at the float; the throughput of the larger (700 

mm ID) vessels is 200-250 tonne per hour depending on the specific application. 

The Tri-Flo™  is also used for metal recovery from slag and for the treatment of post-

consume material. It has proved effective to separate high quality recycled glass by rejecting 

low and high density contaminants in glass separately collected as municipal solid waste. 

 

 
Figure 1 Simplified dense media separation flowsheet with a two cut density Tri-Flo™ device. 

 

The design of the two stage cylindrical separator has been continuously improved through 

the years based on practical experiences accumulated in the industrial operations and on 

visual observations of the separation behavior made in small scale transparent acrylic 

material models operated with water and water-based brines. In particular the design of the 
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tangential inlets has been subjected to re-design with the aim to reduce turbulence. An 

involute-like connection between the inlet and the cylindrical section is now adopted and a 

new feeding system for cylindrical separators (DynafeedTM) has been recently developed and 

patented. 

The most used Dutch State Mines type cylindrical-conical separators -where the feed and the 

medium suspension are pumped together- have been studied thoroughly in recent years, 

also resorting to multiphase computational fluid dynamics (Delgadillo & Rajamani, 2005;  

Narashima et al., 2006,2007). In contrast the cylindrical separators has been receiving much 

less attention  by CFD (Shi, 2010)  . The velocity distribution within the two-stage Tri-Flo™ 

has been measured by Chine (1995) and Chine et al. (1997) with laser Doppler techniques. 

The flow pattern of the highly swirling and turbulent flow affects the separation efficiency. 

The possibility to accurately predict the velocity field within the vessel and their dependence 

on the main Tri-Flo™ operating and geometrical variables paves the way to a better 

understanding of the functioning of the separator, its design improvement and scale-up. In 

spite of the Tri-Flo™’s simple geometry the swirling flow behavior is complex and include 

turbulence, air core vortex formation and stability, intricate velocity and pressure fields. 

The aim of this work is to develop a proper fluid-dynamics model and its implementation 

within a computational fluid dynamics software, making it possible to simulate and better 

understand the behavior of dense medium cylindrical cyclone.  

The simulation results were compared with the experimental data obtained by Chine (1995)  

on the reduced size two stages (inner diameter of 100 mm, about 1 meter of length and 15° of 

tilt) pilot Tri-Flo™ separator, made from transparent acrylic material and operated with 

water at different values of the operating parameters.  

METHODOLOGY 

The separator vessel and the inlet and outlet orifices were meshed with a hexahedral-cells 

block-structured computational grid (Fig. 2) encompassing ~300 k cells. The orientation of 

the domain is such that its z axis is the axis of the two cylindrical compartments. Ansys-

ICEM®  is the used for meshing. Special care is needed to join the mesh of the thinning 

inlet/outlet involute shapes to the rest of the computational domain using solely structured 

blocks. 

The Volume-of-Fluid (VoF) model is used for fluid simulation as the two fluids are 

considered immiscible. Air enters the model from the axial feed inlet, while water enters 

tangentially at the bottom of both stages at the inlet of the separation medium. The flow of 



 

 

air and water within the two stage cylindrical separator is  simulated with Ansys Fluent ver. 

14.0. 

 
Figure 2 Block structured hexahedral mesh of the considered geometry 

 

Medium inlets are defined as velocity inlets with the prescribed average normal velocity, 

turbulent  intensity at both inlets was set to 5%. The sink discharge outlet are defined as 

pressure outlet with a static counter pressure. Axial orifices are defined with static pressure 

set to zero. 

The high Reynolds number of the considered water flow prevents a direct numerical 

simulation of the turbulent flow through the cylindrical cyclone. Therefore, an Unsteady-

RANS approach is followed, where the effect of high-frequency turbulence fluctuations on 

the low-frequency components of the flow is represented by a Reynolds-Stress (RSM) model. 

The RSM model solves transport equations for each Reynolds-Stress components and for the 

turbulent kinetic energy and turbulent energy dissipation. The surface tension that acts at the 

water – air interface is accounted for via the Continuum Surface Force (CSF) model as an 

additional body force. The body force is proportional to the surface tension coefficient and 

the local curvature of the interface and adds as a source term in the momentum equation 

(Brackbill et al., 1992). The geometric reconstruction method based on the piece-wise linear 



 

 

interface construction (PLIC) algorithms is used in the present work for interface tracking. 

 Simulations were run on a low cost machine based on an Intel 3970X six core processor. 

RESULTS AND DISCUSSION 

Figure 3 is a snap-shot extracted from a long movie that visualizes the air core formation in 

the inner axial part of the cylindrical section and its  time evolution. Here the air core is 

colored with the axial velocity. The  air core is stable as it does not collapse during the 

simulation and if it rarely does then it recovers rapidly. The air-water interface is, however, 

not stationary as it wobbles in the middle of the device. Recorded movies show that the air 

core is not stable in shape and position and the degree of "wiggling" depends on the flow 

parameters.  

 

 

 

Figure 3 Computed air core colored by axial velocity 

 



 

 

The observation of the fluid velocity components shows an upward axial velocity near the 

wall and a downward velocity near the air core. A zero axial velocity iso-surface can be 

drawn in between. The fluid (medium) that does not exit at the sink is subjected to flow 

reversal and directed down to the float outlet.  

 
Figure 4 Axial velocity at several cross-sections 

 

The axial velocity component is responsible for recovering the particles at the outlets. 

Particles close to the wall are reported to the SINK products by the upward axial velocity 

component. The downward velocity component accompanies particle close to the air-core to 

the FLOAT products at the axial float discharge. 

 
Figure 5 Calculated, time averaged and interpolated (red – positive, green – negative) fluid axial velocity fields. 

Laser Doppler measured profiles are in blue. Left side represents the 1-st stage, right side represents the 2-nd 

stage.  



 

 

 

Particle on the zero axial velocity iso-surface can be indifferently reported to the sink or the 

float. Axial velocity distribution at several cross-sections is shown in Figure 4. Here negative 

values are for components toward the sink outlets and positive is toward the float discharge. 

The pattern is approximately symmetrical with respect to the device axis. At the cyclone 

device wall the axial velocity is zero. By moving from the wall toward the axis the upward 

component increases to a maximum value and subsequently decreases to zero. It turns sign 

and the module increases. The air core velocity is downward toward the float discharge and 

has a maximum at the central axis. Figure 5 overlaps the laser Doppler profiles (in blue color) 

to time averaged computed axial velocities. 

 

 
Figure 6 Calculated, time averaged and interpolated (red – positive, green – negative) tangential velocity fields. 

 

The radial position of the particles is determined by the acting centrifugal force. The 

tangential fluid velocity is responsible for the centrifugal acceleration and force. Particles 

with high density and larger size tend to be pushed toward the wall and recovered with the 

SINK by the axial component. Comparison of velocity fields at different time instants 

indicates that the tangential velocity component does not change substantially in time. The 

tangential velocity is higher at the wall and decreases by moving to inward toward the air 

core, there is a discontinuity in the profile at the interface. The tangential velocity is pretty 

constant also moving axially (Fig. 6). This seems to be a peculiar characteristic of the Tri-

Flo™ that is favorable to an efficient separation. The lowering of the back pressure at the sink 

outlet of one compartment produces a significant rise in the tangential velocity of the same 

compartment.  

 



 

 

 
Figure 7 Calculated, time averaged and interpolated (red – positive, green – negative) fluid radial velocity 

 

As for the cylindrical-conical hydro-cyclones also for the Tri-Flo™ the computed radial 

velocity component is about one order of magnitude less than the other two components 

(Fig. 7). The radial component is strongly affected by the air core instability in shape and 

position; in turn the degree of "wiggling" of the air core depends on the flow parameters. The 

angle of inclination of the device about the horizon is also a possible cause of un-symmetry. 

Other authors have noticed the asymmetry of the radial components in hydrocyclones. 

CONCLUSION 

Computational fluid dynamics methods allow to reproduce numerically and accurately the 

velocity fields measured experimentally with non- invasive techniques on small scale Tri-

Flo™ models at the same operating conditions. Other results not reported here, due to 

limited space, indicate that also trends, i.e. variation of the velocity components at the 

change in important operating variables such as sink counter pressure, are in agreement with 

experimental measurements. The numerical methods appear as a tool suitable to drive the 

improvement of the application of the separation device design and the modification of its 

geometry. Future development of the methodology will provide the separation efficiency by 

simulating the release of groups of particles at the feed inlet by adding a Discrete Phase 

Model (DPM) to the existing model. The DPM should provide the ability to predict the 

probability of particle of given size and density of exiting the device through each of the 

outlets. 
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