

Numerical simulation of waterair flow pattern in a TriFlo® cylindrical separator

Girolamo Belardi, <u>Paolo Bozano</u>, Jure Mencinger, Marzio Piler, Gianni Schena

ECOMIN Fields of activity

- hydromechanical processing and subsequent digestion of bio-wastes, domestic refuse and miscellaneous of municipal and industrial wastes and biomasses
- renewable energy

- ore dressing, industrial minerals
- environmental & recycling plants
- steelworks, material handling
- mining, tunneling & civil works

engineering services, assistance to plant operation and strategic consulting in above fields

Dense Medium Cyclone Separators

Two stages: Why?

POTENTIAL APPLICATION FOR CHILE: COPPER PRECONCENTRATION GANGUE DISCARD

- 1st stage : rougher
- 2nd stage : cleaner > in coal prep
- 2nd stage : scavenger > in min prep
- Two density cuts (i.e 3 products) and/or 3 stages also possible

Chromite TriFlo® 400

Coal
TriFlo® 500
with Dynafeed®

Advantages of Rougher cleaner and rougher-cleaner with re-circulation

Circuits

(F = Feed; C = Concentrate; R = Rejects)

1. Rougher

$$F \longrightarrow C \longrightarrow F$$

SG50=1.600

2. Rougher-Cleaner

SG50=1.568

Rougher-Cleaner with Re-circulation

Ep=0.727

SG50=1.582

Rougher-Scavenger-Cleaner with Re-circulation

Ep=0.500

SG50=1.600

Assumptions:

- each stage has the same Ep and the same separation cut point d_{50}
- Whiten partition equation
- the reported Ep of each circuit has been normalized to the single stage circuit

Triflo®- CFD study

CFD Set-up

- CFD solver: Ansys-FLUENT ver 14.0
- Mesher: Ansys-ICEM (> 300 000 hexeahedral cells)
- Multiphase: Volume Of Fluids (VOF) model
- Inlet boundaries: prescribed velocity with 5% turbulence
- Outlet boundaries: prescribed back-pressure
- Turbulence: Reynolds-Stress (RSM) model
- Surface tension: Continuum Surface Force (CSF) model
- TriFlo® 100mm ID

Time required for Semi stationary state

Timed Streamline

Axial velocity at several cross sections

Wide zone of zero axial velocity means favourable condition for high sharpness

- ✓ Downward axial velocity near the air core
- ✓ Zero axial velocity in between (wide zone)
- ✓ The medium that does not exit at the sink is subjected to flow reversal and directed to the float outlet

Axial velocities

CFD vs Experience: Comparison between CFD results and laser Doppler measurements on a transparent acrylic model TriFlo® 100mm ID

- ✓ Particles close to the wall report to the Sink products by the upward axial velocity.
- ✓ The reversed flow (downard axial velocity) close to the air-core accompanies the Float products at the axial float discharge

Simulation 51cm Counterpressure

Simulation Increasing Counterpressure

Tangential velocities

Typical plant flowsheet – Graspan RSA

treating rejects from DMS plant with static bath 70x28mm, DMS 28x1mm, spirals <1mm

Graspan RSA – Coal Washing Plant

Average Ep=0.012/17 and very little misplaced materials 0,86% Organic efficiency 98,9% - Near Gravity material (± 0.1 g/cm³) 27,2%

Graspan RSA 700mm TriFlo®

Top sized washed 200x115x65mm

At Tabas CPP 300x190x100mm lumps have been rejected

Tramp material collected from the sink discharge – steel bar 800 mm long

Graspan RSA Wear conditions after 1,25Mt discards

Very limited and localized wear in the Sink1 head (with Abrasion Index 2.000)

New TriFlo® can be fully ceramic lined

Woksop UK - PLASTIC RECYCLING

Plastic recycling from automobiles shredding residues 5 t/h - TriFlo® 250

Superior results of the TriFlo® technology in plastic separation

Comparison between conical cyclones and TriFlo®. Definitions: Purity - Wt% of light particles (SG<1.10) in float; Losses - Wt% of light particles (SG<1.10) in sinks

- ✓ Cylindrical cyclones are more suitable for low density separations;
- ✓ Cylindrical cyclones are less sensitive to particle shape (flat and elongated particles can not be separated efficiently in traditional conical cyclones);
- ✓ Double washing in one vessel with higher separation sharpness;
- ✓ Very forgiving of feed changes
- ✓ Compact layout;
- ✓ Gravity feed of difficult to pump and abrasive material;
- ✓ Low head plant

Brusnengo Italy – Glass recycling

Glass recycling from glass cullets 30 t/h - TriFlo® 300

TEST	Test A		Test B		Test A + B	
Size 10 mm x 1 mm	Weight [g]	PbO [ppm]	Weight [g]	PbO [ppm]	Weight [g]	PbO [ppm]
Feed (Recycled Glass)	24133	344	22688	376	46821	359
Heavy Fraction 1 (HF1)	269	14000	223	18500	492	16040
Heavy Fraction 2 (HF2)	1364	680	2230	430	3594	525
Final Product (Float)	22500	16 0	20235	170	42735	165
HF2 + Float	23864	190	22465	196	46329	193
HF1 Wt.% / PbO Yield %	1,11	45,4	0,98	48,4	1,05	(46,9)
HF2 Wt.% / PbO Yield %	5,65	11,2	9,83	11,2	7,68	11,2

Figure 1. Separation Results with Recycled Glass (no tracers present).

Figure 2. Tracers Separation. Left: 24% Pb crystals; Right: 4 mm Al₂O₃ particles.

Copper Preconcentration

A potential application for increasing ROM Cu % to the design values of the existing concentration plants

GOAL: EARLY WASTE REJECT

Necessary precondition: Cu enrichment in heavier density fractions in size coarser than 0.5mm MAIN ADVANTAGES:

IVIAIN ADVANTAGES.

- 1. Savings in grinding and processing costs (energy etc)
- 2. Savings in water consumption
- 3. Extended mine life due to lowered cut-off grade
- Better utilization and higher metallurgical efficiency of existing plants (feed with design Cu%)

CFD Conclusions

- Computational Fluid Dynamics is a powerful tool for a better understanding of the fundamental behaviors of the TriFlo®
- The model has been verified with Laser Doppler experimental data
- Prediction of separation results depending on feed material and operating parameters
- It is a cost-efficient way of achieving better and more accurate designs highly reducing expensive and time consuming prototyping

QUESTIONS?

We are your competent partner for:

• ore dressing, industrial minerals, steelworks, environmental & recycling plants, anaerobic digestion of biowaste, material handling

Tank House Crane

Lamella Thickener

TriFlo™

Rubber Hoses

ECOMIN S.r.l.

Via di Francia 54R 16149 – Genova - ITALY ecomin@ecomin.it www.ecomin.it

